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May 2023

Dear MIT Community,

We are incredibly excited to share the 45th issue of the MIT Undergraduate 
Research Journal (MURJ). MURJ is a biannual, student-led publication featur-
ing innovative undergraduate research at MIT. In this issue, we are proud to 
showcase the research contributions of students at MIT, which are the product 
of curiosity, perseverance, and a drive for excellence.

Research in this issue highlights the integration of science and engineering with 
technology. Advancements in artificial intelligence and computing have greatly 
accelerated scientific progress and interdisciplinary collaboration. From devel-
oping a mobile platform for physicians to monitor health behavior to optimizing 
electrospray thrusters for satellite propulsion, the work of students reflects their 
relentless pursuit to further knowledge and engineer solutions at the cutting-
edge of engineering and technology.

We are also pleased to share wisdom imparted by professors and alumni in 
industry. Retiring linear algebra professor Gilbert Strang takes a deep-dive on 
mathematics research at MIT while Angela Koehler, associate director of the 
Koch Institute for Integrative Cancer Research, sheds light on the state of affairs 
of the fast-paced biotech research ecosystem. The breadth of perspectives in 
biology, mathematics, and computation not only enriches our understanding of 
these areas, but enables us to draw synergies between adjacent fields. 

As research is seldom a solitary task, it would be amiss to acknowledge the con-
tributions of the authors and interviewees in this issue. The publication of this 
journal is an undertaking by a team of dedicated students and this issue would 
not have been possible without the hard work of MURJ research, content, and 
layout staff. We hope this issue of MURJ and the work of its contributors is both 
enlightening and inspiring. 

Warm regards, 

Anusha Puri
Editor-in-Chief
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Welcome to the Big Players Only Stage
A brief commentary on the current state of affairs in the biotech research ecosystem when 
innovation is at stake, narrated by its protagonists.

“!e biotech market is currently oversaturated with com-
panies that simply went public on great ideas, and we are now 
entering the big players only stage,” said Dr. Angela Koehler, 
Associate Professor of Biological Engineering at MIT, in an 
exclusive interview in late February. She was sharing her 
perspective on the state of innovation in the biotech envi-
ronment as the founder of multiple startups in parallel to 
her academic work, and was thus providing an answer to 
the question that inspired my commentary piece published 
in the Fall 2021 edition of MURJ. What makes Professor 
Koehler’s observation so insightful however is that on April 
1st 2023, merely two hours before I started dra!ing this 
follow-up piece, it was announced that Dr. Samarth Kulkar-
ni, CEO of CRISPR "erapeutics, sold 1.2M$ worth of his 
company stocks for the third month in a row.

While this news by itself might not spell doom for 
CRISPR Tx. as a company, when combined with that of 
the stepping down of Dr. Brad Bolzon, senior advisor in 
the CRISPR Tx. board of directors, and with a backdrop of 
stock prices halving in value since last July, potential invest-
ments in the company surely do not seem as promising. Is 
this an unlucky coincidence, or does the case of CRISPR Tx. 
present an opportunity to cut deeper into the inner work-
ings of the post-COVID-19 biotech market?

One could reasonably argue for the former by pointing 
out that Dr. Emmanuelle Charpentier, 2020 Nobel Laureate 
in Chemistry, and Dr. Craig Mello, 2006 Nobel Laureate in 
Physiology or Medicine, are company co-founders and cur-
rently serve on its Scienti#c Advisory board, while the CEO 
Dr. Kulkarni himself was a heavyweight of venture capital 
before joining CRISPR. A!er all, if this star-studded C-suite 
and the premise of innovative genetic medicines targeting 
hemoglobinopathies, immuno-oncology, and tissue regen-
eration is not enough to grant the title big player, what is? 
According to Dr. Koehler, the real factor governing the abil-
ity of companies to raise enough funds to stay a$oat in the 
aggressive biotech market of today is not the brainstorming 
potential of established PIs willing to lock themselves in dis-

cussion, but demonstrated in vivo e%cacy and the readiness 
to market products. Indeed, only one of the seven projects 
in CRISPR’s “In Vivo Approaches” pipeline has made it to 
the Investigational New Drug (IND-enabling) stage, and 
none of them have reached clinical trials. Even CTX001, the 
#rst major gene editing project of the company and what 
Dr. Kulkarni referred to as “practically a cure for Sickle Cell 
Disease and β-"alassemia,” is only scheduled to #nish its 
Phase 2 trials in late 2024.

A major component of the biotech environment that 
has changed since the publication of the Fall 2021 piece, 
and whose signi#cance must be taken into consideration 
before committing to generalizations from case studies, 
is that the industry simply has to make do with less capi-
tal. "e pandemic-fueled $ow of investments into biotech 
from other conventional but less-promising sectors began 
ceasing in the summer of 2022, and the NASDAQ Biotech-
nology Index (a rough proxy of how well the biopharma-
ceutical industry is performing as a whole) has decreased 
by more than 25% in share price since October 2021. "e 
collapse of the Silicon Valley Bank on March 10th of this 
year stunned many early-stage biotech startups, while the 
more weathered ones are constantly having to re-emphasize 
the relevance of their mission and progress. Dr. Josh Speros, 
Investment Manager at the Venture Capital arm of BASF, a 
major biochemical manufacturer, proudly mentioned in an 
interview that he and his team of four went over more than 
1500 funding applications submitted to BASF over the past 
year: all with incredible ideas, some with #nished products, 
even fewer with patents protecting those inventions. Only 
50 of those companies ended up receiving funding from 
BASF.

Many biopharmaceutical companies that rode the 
COVID-19 wave of unprecedented cash in$ux despite not 
having COVID-19-related products saw their stock values 
dwindle in the recent biotech crash which visibly shook 
stakeholders, but a less appreciated consequence is the im-
pact that this drop has had on the senior executive level, 

Biotechnology

By Arbri Kopliku
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Dr. Samarth Kulkarni 
(red arrow), CEO of 
CRISPR 0erapeutics, 
a1er a talk with the 
MIT Biotech Group.

says Professor Koehler. Simply put, if you were hired in 
the immediate post-pandemic biotech market and o1ered 
a generous amount of stock options with prices that at the 
time seemed conservative, chances are that with the de-
valuation of biotech companies your stock options might 
be more expensive than the current market value, putting 
you underwater. Without any major stakes in the company, 
there is not much keeping these C-suite executives from a 
fresh start with a new company and an exciting prospect, 
which raises concerns among the HR teams of the big play-
ers in parallel to promoting innovation and optimizing 
marketability.

A name certainly a%liated with the biggest of players 
is Arpa Garay, Chief Commercial O%cer at Moderna and 
MIT alumna. A!er 16 years of executive positions at Merck, 
including President of Global Oncology and Chief Market-
ing O%cer, she joined Moderna in May 2022 and brought 
with her a business-minded approach that promised to 
turn a rapidly expanding company with a startup mental-
ity into an established biotech actor. Her work has shown 
that innovation in biotech does not have to come from the 
lab: we live at a time when the opinion of the customers 
overrides that of the doctors, and the commercial practices 
of any company willing to succeed should follow suit. Af-
ter creating entire commercial teams from scratch, under 
Mrs. Garay’s leadership Moderna secured partnerships with 
governments worldwide to build manufacturing facilities in 

di1erent countries in exchange for #xed epidemic-ready 
batch vaccine orders with priority delivery. "is way, the 
governments have their health security guaranteed due to 
the host-priority of the product of each facility, while Mod-
erna locks in predictable contracts to #ne-tune their manu-
facturing capacities. An interesting outcome of this entire 
project is that to this day Moderna does not have a single 
salesperson in the #eld, let alone dedicated campaigns to 
convince doctors of the worth of new treatments.

 Mrs. Garay rightfully admitted that the capacity 
to innovate in high level marketing approaches is a luxury 
that not many companies have. Lexington Medical, a small 
medical device company founded in 2013 and headquar-
tered in Bedford, MA, that specializes in surgical stapler 
manufacturing, almost had to permanently close its doors 
due to the COVID-19 pandemic lockdown. Its reliance on 
conventional face-to-face interactions for arranging ship-
ment orders meant that a disruption in global travel and 
supply chains could cripple its business model and put the 
future of the company in danger, despite the quality of its 
sole product being notably better than the competition in 
e1ectiveness, safety and cost. "e solution that the leader-
ship team adopted when this worst-case scenario became 
reality was an aggressive hiring campaign that led to sales-
persons outnumbering engineers by more than an order of 
magnitude, and that entire sta1 is still part of the company 
today. While Lexington Medical successfully weathered the 
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challenges due to COIVD-19 by a mix of fortune and daring 
hiring decisions, one could see how the company might not 
be as lucky when the next global market disruption strikes.

 We have thus built a somewhat-grim panorama of 
the post-pandemic biotech industry, and it is ripe time for 
a discussion of the role that this panorama plays in innova-
tion by looking at two key observations. For the #rst one, in 
what sense do Moderna and Lexington Medical di1er from 
CRISPR Tx, that could have 
in$uenced their di1ering 
prospects for the near fu-
ture? "e answer is intel-
lectual property (IP), and it 
should come as no surprise 
given Moderna’s openly re-
lentless crusade to hermeti-
cally safeguard every plat-
form process component 
from mRNA medicine com-
position to delivery mecha-
nisms, even if that means 
legally challenging P#zer, 
Alnylam, BioNTech and the 
US Government. "e case 
of Lexington Medical was 
not as eventful, but they did 
make a point of focusing on 
a single, well-characterized 
piece of intellectual prop-
erty that is their surgical 
stapler, and of taking ad-
vantage of the regulatory leniency by adding custom-made 
modi#cations to order that do not need to be re-screened 
for safety and e%cacy by the FDA. When asked about his 
opinion on the relevance of IP, Dr. Kulkarni, the CRISPR 
Tx. CEO, answered: “I see people founding successful com-
panies without any IP all the time. While in Europe IPs can 
be necessary to enter the drug market, here in the US they 
only serve for peace of mind. A!er all, licensing technol-
ogy from a major institution like UC Berkeley or MIT is not 
that expensive, and provides a reliable business model”. "at 
question was a charged one, as MIT and the Broad Institute 
had won their legal case against UC Berkeley for ownership 
of the CRISPR invention patent merely 6 months before Dr. 
Kulkarni’s comments. Companies like Intellia and CRISPR 
Tx, which had been licensing the technology as the founda-
tion of their entire companies from UC Berkeley had just 
seen their licenses revoked.

"e second observation is that, in stark contrast to 
the Fall 2021 commentary, from an academic perspective 
the biotech industry is very much not anonymous. A great 
example of this new visibility is NORA, the Northeast Re-
search Alliance, which is a strategic research initiative led 
by BASF in collaboration with MIT, Harvard University, 
and UMass Amherst. "is collaboration led to 56 spon-
sored projects, resulting in 41 patent applications and 27 

publications. While the pro-
gram has existed since 2012, 
its reach into academia was 
extended when BASF ex-
ecutives engaged in talks 
with undergraduates from 
each of these universities to 
evaluate the possibility of di-
rect sponsorship for under-
graduate biotech-adjacent 
projects.

 "is discussion of 
the challenges imposed by a 
demanding biotech market 
upon commercial and aca-
demic actors was not meant 
to con#rm or deny whether 
we really are living in the 
roaring 20s of biological re-
search as proclaimed by Dr. 
Kulkarni in his talk with the 
MIT Biotech Group. Instead, 
my interviews with estab-

lished professor-entrepreneurs, venture capitalists, compa-
ny CEOs and government agency representatives served as 
proof that the fundamentals of innovative progress, includ-
ing patents and the conditionality of funding, apply despite 
the hostility of the current market towards new players. "e 
resulting bottle-neck into the big players only stage comes 
with its pros, as can be seen by Moderna’s innovation out-
side the lab to solidify its public image association with an 
exclusive product of high quality, as well as cons, as dem-
onstrated by the hundreds of potentially game-changing 
biotech startups whose future is le! on the hands of a hand-
ful of venture capital investment managers at a giant bio-
chemical conglomerate. Once again, this piece would not 
have been possible without the candid remarks of all my 
interviewees and their patience as we carefully traversed a 
complicated landscape of disruptors and innovators.
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 “Instead, my interviews 
with established professor-

entrepreneurs, venture 
capitalists, company CEOs 

and government agency 
representatives served as proof 

that the fundamentals of 
innovative progress, including 
patents and the conditionality 
of funding, apply despite the 

hostility of the current market 
towards new players.”
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Inside all our phones, our computers, even 
our refrigerators, lies a hidden hero, the silicon 
microchips that drive all technology worldwide. 
All this is possible thanks to two properties of 
silicon: its abundance in the form of silicon dioxide, 
or sand, and its properties as a semiconductor, a 
material that conducts electricity worse than 
conductors (like metals) but better than insulators 
(like rubber).

 However, despite these promising 
properties, which have led to its ubiquitous use, 
silicon is anything but perfect. According to 
MIT Professor Gang Chen, silicon has two large 
weaknesses. The first is its poor heat conductivity, 
which is why electronic devices overheat easily. 
The second is that while silicon conducts electrons 
well, it lacks the ability to conduct “holes,” the 
negatively-charged electron’s positively-charged 
counterpart.

That’s where the idea of cubic boron arsenide 
arrived, which according to a group of researchers 
including Prof. Chen and Prof. Zhifang Ren at the 
University of Houston, solves both of these issues 
that silicon faces.

According to Prof. Chen, the work began 
when a frequent collaborator of his, Professor 
David Broido at Boston College, discovered that 
cubic boron arsenide was an intriguing material 
for solving heat issues: “Our initial experimental 
measurement was heat, … and we worked for 
a few years and proved that this material really 
does have high thermal conductivity, and that 
was 2018.” From there, with the experimental 
properties of cubic boron arsenide verified for the 
first time, the research took off.

Using research that his group had been 
separately developing for measuring the electrical 
properties of materials, Prof. Chen then decided 
to test cubic boron arsenide through a suite 
of simulations, discovering that “cubic boron 
arsenide has both high electron mobility and 
hole mobility, [which] is very unusual because 
there are [effectively] no materials” with the same 
properties.

Now, the new work tries to prove the results 
in the real world, taking the simulations from 
numerical estimates to actual measurements. To 
reach these goals, Prof. Chen began collaborating 
with Prof. Ren at Houston, who invented the 
procedure for growing cubic boron arsenide 
in the lab, a first step towards experimental 
measurement.

This is where the biggest challenges started. 
As Prof. Chen stated, “The measurement was 
hard, because even though we could grow a single 
crystal, different places had different impurities, 
… so the material was nonuniform.” In essence, 
the group of researchers could not calculate 
consistent measurements from the samples of 
cubic boron arsenide they were able to grow 
in the lab, leading to significant experimental 
doubts.

But after coming back to their apparatus 
for measuring the heat conductivity of cubic 
boron arsenide, Prof. Chen’s team reached a 
breakthrough. Using the tool originally designed 
with Prof. Keith Nelson of the MIT Department 
of Chemistry, the researchers modified the 
device to send electrical signals through the 
compound instead of watching heat propagate, 
using a technique called the “transient gradient 

Cubic Boron Arsenide:
The Semiconductor of the Future

Featuring MIT Professor Gang Chen
By Rishab Parthasarathy
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technique” to discover which areas of cubic 
boron arsenide would yield valuable experimental 
results. Using this technique, they were finally 
able to finetune the results which they have now 
published, verifying that cubic boron arsenide has 
unique electrical and 
thermal properties 
that aren’t possessed 
by any other known 
semiconductors.

Looking to 
the future of the 
technology, Prof. Chen 
said “[cubic boron 
arsenide] is more like 
a cubic material: it’s 
like the same type of 
material that people 
currently use for 
s e m i c o n d u c t o r s ,” 
giving cubic boron arsenide a unique advantage 
over other current avenues of research like 
graphene. But getting to a place where these 
materials can replace silicon is still unclear, as 
“it’s still early-stage research showing that these 
materials have amazing properties”.

As for next steps, Prof. Chen hopes that 
his work has opened the eyes of his fellow 

researchers to the potential of materials like cubic 
boron arsenide, a whole class of semiconductors 
that has not yet been well studied: “It’s so simple 
as a compound, … and it’s most exciting that 
we’re demonstrating this potential.”

So one day, once 
industry uses their tools 
to develop cubic boron 
arsenide, improving 
the bottleneck of our 
ability to efficiently 
synthesize pure cubic 
boron arsenide, you 
might just use these 
simple compounds in 
your smartphones of the 
future, powering your 
life behind the scenes.

 Speaking to 
undergraduates who 

want to get into research, Prof. Chen closed by 
noting the interdisciplinary nature of his work, 
linking with professors across MIT departments 
and across national universities. In his words, “if 
you have an [interest or a question], reach out to 
that professor or the students in that group, and 
then if it’s not at MIT, go beyond. Nowadays, it’s 
so easy to find information, so don’t be shy!”

By Rishab Parthasarathy
 “If you have an [interest or 

a question], reach out to that 
professor or the students in 

that group, and then if it’s not 
at MIT, go beyond. Nowadays, 
it’s so easy to find information, 

so don’t be shy!”
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The Massachusetts Institute of Technology is 
known for its rigorous mathematics programs and 
prolific research department. MIT’s accomplished 
mathematics professors have published research 
papers in topics ranging from parallel computing 
to algebraic geometry. However, it can be difficult 
for students to keep in touch with and learn 
about the math department’s research processes 
and UROP opportunities, as only a few postings 
of these are made known to students through 
platforms such as ELX. To promote mathematics 
research, MURJ is interviewing a few professors 
to learn about their experiences in mathematics 
research, what they are currently working on, and 
their advice for aspiring mathematicians. 

 The following are several interview 
questions answered by Professor Gilbert Strang, 
Professor Larry Guth, and Professor Jeremy Hahn. 
Professor Gilbert Strang is MIT’s distinguished 
pioneer in linear algebra and currently teaches 
18.06 during his last semester with MIT. His 
research focuses on mathematical analysis, 
linear algebra and PDEs (Partial Differential 
Equations). Professor Larry Guth specializes in 
metric geometry, combinatorial geometry, and 
harmonic analysis. Professor Jeremy Hahn joined 
the MIT department most recently (in 2021); 
his work specializes in algebraic topology and 
homotopy theory. The three professors were 
interviewed about their past and current research, 
post-undergraduate lives, advice they have for 
students, and their input on mathematics and 
technology. 

PAST RESEARCH/SIGNIFICANT WORK 
Questions asked: “What research/work have you 
done? Which are your favorite and most impactful?”

Professor Strang
For me, textbooks and video lectures have been 

a big part; that's probably the most important thing 
I’ve done. When I started teaching linear algebra 
at MIT, 50 or 60 years ago, linear algebra was only 
for math majors. When I was an undergraduate 
and I took the course, it didn’t have that number 
18.06. It was very abstract, very pure, and only a 
small number of math majors were in it. And to 
me, as years went on, I thought, ‘This is not right!’. 
Linear algebra is just as important as calculus, 
and many more students have to know about 
linear algebra. And it’s beautiful! Nice ideas, nice 
structure. I like it better than calculus.

Calculus has this key idea of slope at a point 
and area. But linear algebra is coming everywhere 
now in deep learning, data science, statistics, 
and many many more applications. So, it was a 
subject I enjoyed. My work is mostly in textbooks 
and original articles on linear algebra with 
applications. 

The research I’ve done is on topics in pure 
linear algebra: results about the rank, the null space 
and all the good things, and their applications to 
engineering and to science generally. I introduced 
18.06 for a more basic linear algebra course with 
more applications instead of all proofs, and it 
caught on quickly to all departments at MIT. It 

A Deep-Dive Into
Mathematics Research at MIT

Featuring MIT Professors Gilbert Strang, Larry Guth, and Jeremy Hahn
By Gwyneth Margaux Tangog and Hannah Han
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became a bigger and bigger course, and more fun 
to teach and more fun to write about. That’s my 
main direction in a nutshell.

My work is always seeing ideas that are either 
specifically in linear algebra: like facts about 
the ranks of submatrices and applications in 
engineering and science where linear algebra 
comes in. One place that was sort of exciting—I 
hadn’t taken any engineering courses at MIT 
when I was a student, so I didn’t really have a good 
picture of what some of the problems were. But 
civil engineers and mechanical engineers needed 
to solve differential equations. They had devised 
something called a “finite element method”. And 
it was successful! Engineers were using it, coding 
it big time, companies were coding the finite 
element method, and it had many variations. So, 
naturally, a math person like me says, “What’s 
going on? What’s the math behind it?” So that 
was my part, and a bunch of others also wrote 
about the finite element method. It’s a way to 
solve differential equations. The original way 
was to take every derivative and turn it into a 
finite difference, sort of undo calculus.  The finite 
element method was another way to approach the 
problem: you invent some trial functions, and the 
problem would be to find the best combination 
of the trial functions to solve your equation. It 
started with trial functions instead of starting 
with [(y(x+h) - y(x)]. So it was an adventure, and 
then I wrote a book about what I understood, 
which was only part of it, and that got me into 
writing books!

Professor Guth
When I was a postdoc, I got very interested 

in a problem called the Kakeya problem, which 
is a geometry problem but it turns out to be 
related to Fourier analysis and waves and a few 
different things. The geometry problem is—the 
original version is—you have a needle that has 
length one sitting on the table and you want to 
rotate it all the way around and see how little 
area it takes to do that. At first it seems like the 
best way would be to put it inside of a disk and 
rotate the needle around the disk, but it turns 

Professor Gilbert Strang

Professor Jeremy Hahn

Professor Larry Guth
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out that’s not the most efficient thing to do. 
And surprisingly, you can rotate the needle all 
the way around in an arbitrarily small area –
Besicovitch found that in 1920. If instead of being 
infinitely thin and the needle has some small 
thickness delta, then it takes a finite amount of 
area, and then (1/log(δ)) is the most efficient 
thing to do. That’s in two dimensions, which is 
kind of understood, and then there’s a similar 
problem in higher dimensions. So you have a 
cylindrical needle radius delta, length one in 
three dimensions, and you want to have a three 
dimensional chamber that can hold this needle 
pointing in any direction. How big does it need 
to be? Even in spite of Besicovitch’s example it 
seems intuitive and it seems plausible that the 
area you need is pretty close to the volume of 
a ball, but nobody knows that, so this problem 
was around sort of a geometry problem a long 
time ago but then people realized it’s potentially 
related to questions about wave propagation and 
questions in Fourier analysis [in terms of] how 
well Fourier’s series model their functions. 

Nets Katz11 and I were very interested in this 
and we were thinking about different problems 
that are related to it, and there is a computer 
scientist who solved a cousin of the Kakeya 
problem, and he gave this very short proof, two 
page proof, and it used high degree polynomials 
in a clever way that was surprising to everyone. 
And it was based on ideas in error-correcting 
codes in computer science; they used high degree 
polynomials. So Nets and I worked together to try 
to understand how much this could say about the 
original Kakeya problem. So far, it doesn’t seem 
to solve the original Kakeya problem but we used 
it to solve some other problems in combinatorics. 
The problems in combinatorics are about the 
intersection patterns that you can make, using 
a finite set of lines or a finite set of circles, 
whatever sort of basic geometric object. Like if 
you have a million lines in space, and you’d like 
to make them intersect a lot, so you make a lot 

1 Nets Katz is currently the IBM Professor of Mathematics at the California Institute of Technology. His research interests lie in 
combinatorics, harmonic analysis, and $uid mechanics.
2 Zeev Dvir is a professor in both the Computer Science and Mathematics departments at Princeton University. His interests 
include theoretical computer science and mathematics, with special attention to computational complexity, pseudo-randomness, 
coding theory and discrete geometry.

of special start points that have 10 different lines 
going through them; how should you arrange the 
million lines to make that happen the most? And 
there are interesting patterns of lines that come 
from polynomials, that’d be like some polynomial 
equation that makes a surface that has a lot of 
lines in it, if you take the lines in the surface they 
intersect each other a lot in a nice way. What we 
took out of Zeev [Dvir]’s22 proof was a way to 
detect if that was going to happen, that whenever 
you have a set of objects that intersect each other 
a lot, we could find a polynomial that contains 
them and that sort of makes an algebraic family 
that explains why they intersect each other so 
much. So there are fairly many cases where some 
objects that do something surprising, there’s 
like a polynomial or something from algebra 
underneath that explains how they do that and 
there’s a method to find that. And then there 
are lots and lots more questions, where it seems 
like something like that might be true but we 
definitely can’t prove it.

Professor Hahn
I work in algebraic topology and homotopy 

theory which I think is a subject that has 
connections to several different areas. Historically, 
the idea is to study shapes in high dimensions 
and try to understand what kinds of shapes are 
possible and classify shapes up to continuous 
deformations. But algebraic topology in particular 
tries to study those through algebraic invariants. 
Increasingly, in modern years, there's a lot of 
connections to algebra and a lot of interesting 
algebra coming out of the subject. What I’ve done 
in recent years includes explicitly classifying high-
dimensional shapes, a joint work with Robert 
Burklund and Andrew Senger; classifying high-
dimensional shapes satisfying a certain condition 
is an old problem from the 60s. Also, there's a 
really exciting development in modern number 
theory which is exciting, prismatic cohomology. 
I'm doing a lot of work with a postdoc here to 



15

Features Volume 45, Spring 2023MURJ

connect prismatic cohomology with homotopy 
theory and the structures coming out of algebraic 
topology.

Probably my most impactful work is 
something I did in graduate school with fellow 
student Danny Shi. We managed to connect 
purely algebraic invariants—known as higher 
real k theory—to some geometry, geometry of 
complex bordism. As a result of making that 
connection, we were able to do a bunch of new 
computations. That was a lot of fun and seems 
to have impacted a lot. I think my favorite 
research changes. Currently, I'm interested in this 
prismatic cohomology stuff, but I’m sure if you 
ask that question to me in two years, I would say 
whatever I’m currently working on.

POST-UNDERGRADUATE LIFE 
Questions asked: “What is life like for a 
mathematician post-undergraduate? Did you ever 
consider working in 
industry?”

Professor Strang
Actually, in grad 

school, all the way 
through, I had the idea 
that I would go into 
industry, without knowing anything that’s special 
about it, except having the idea that you made 
more money in industry. I had thought, ‘Okay, I 
haven’t got any money, I better work somewhere 
and get some, or my life is gonna be limited.’ 
I was in grad school, I came to MIT as an 
undergraduate, I went to Oxford for a couple 
years in England, and then I went to UCLA to 
finish the PhD. I was at UCLA finishing my 
PhD, and along came an offer from MIT to be 
an instructor. MIT has instructors as well as 
assistant and associate professors. Instructors are 
usually here for two or three years. It was nice 
and I liked California, but I really like Boston. So 
I took that offer. In the end, I changed my idea 
of being an applied mathematician in industry 
to being a professor; it turns out that I enjoy 
teaching! That was a lot of fun; I’m sure that the 

other options of going to work for IBM or Bell 
Labs—at that time it was just IBM or Bell Labs, 
now there are many many companies that hire 
math people—I’m sure that would’ve been okay, 
but I loved this job. Happy I did it. It's been a long 
time and this is my final semester.

Professor Guth
Well people can do lots of different things. I 

went to graduate school after graduating college. 
I did spend a bit of time wondering if I would like 
to do something else, maybe for a little while. But 
then I went to graduate school, and that was a big 
learning time. There were some frustrations but 
[it was] mostly a very happy time in my life. It 
was, for me, a lot about learning to read and write. 
Before that, I hadn't ever read a math paper. I had 
read some books that were somewhat hard-to-
read but, in graduate school, I started spending 
lots of time reading things, reflecting on them, 

trying to understand 
how to read difficult 
passages and navigate 
many different books 
which refer to other 
books. I spent a lot of 
time reading things 
and exploring this new 
world, and a lot of time 

writing things. One of the things about UROPs is 
writing. Almost everyone has this experience the 
first time that they've thought about something 
for a while and they've figured out something 
that makes sense to them. Then, they go to write 
it down and then they produce something that 
other people cannot read. [Then we have to ask,] 
“How do we say things that other people can 
understand?” My time in graduate school was 
a lot about practicing those things. It was sweet 
doing those things with other people. I had a 
little group of graduate student friends—same 
adviser—and we’d take turns reading new things 
and trying to explain them to each other. 

I think that math is useful all over science and 
engineering, but I also have been thinking that 
maybe we could do a little better job of preparing 
people to bridge. I think there are a lot of fields 

"I spent a lot of time reading 
things and exploring this new 

world, and a lot of time writing 
things."
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where it’d be very helpful to have someone who 
knows some math, but maybe, to work in that 
field, it’s also necessary to know some other 
things. Sort of figure out how to get people ready 
for that. Roughly what mathematicians are good 
at is reading something quite complicated and 
digesting how it fits together and being able to 
explain the main points to people and that comes 
up in all technical things. I never have [worked 
in industry]. As I’ve gotten older, it has started 
to sound more interesting and appealing to me. 
When I was young, I just enjoyed doing pure 
math and, as I’ve gotten older, the things that are 
a little more applied are maybe making my ears 
perk up and, someday, [it] sounds really cool to 
work on something more applied, but I also don’t 
have that much time anymore. When I read the 
seminar listings or the topics classes in the math 
department, the ones on math biology or the 
ones on statistics and data science, they all sound 
really interesting.

Professor Hahn
From my own personal experience, I went 

to graduate school. That's different from my life 
now, but my life in graduate school was one of the 
happiest periods of my life. I really got to focus 
on math all day. It's a bit like being an upper-level 
undergraduate but there's less things to worry 
about in terms of HASS requirements and other 
courses and you can focus on things you like. 
That was a lot of fun. It doesn't pay very well to be 
a grad student, but it’s an extremely nice lifestyle 
to be able to focus on the subject.

I do pure math here, so unfortunately I 
haven't had  a lot of opportunities to interact with 
fields outside of mathematics. I think there's a 
spectrum for pure to applied mathematics and 
what I see my personal work connecting a lot 
with is other areas of pure math which might 
then go on to connect with applied math. I do 
enjoy seeing things applied in a lot of places. 
But, personally in my own work, the applications 
have been to other areas of mathematics. I have a 
lot of friends, even going back to my undergrad 
days who have done work in computer science 
and material science who have previously taken a 

lot of math with me, and I certainly feel like the 
math that we took together has influenced some 
of their work. In particular, computer science is 
very popular these days, and for good reason. 
There are connections to a number of areas of 
math there.

RESEARCH AND GENERAL ADVICE FOR 
MATHEMATICIANS

Questions asked: “What advice do you have for 
aspiring mathematicians at MIT? What advice do 
you have for students looking to do a UROP in the 
math department?”

Professor Strang
My advice is to look for, sometimes a bunch of 

problems or an area of math just clicks. You feel 
you kind of understand it and you see some new 
questions. That’s what you hope for. Hopefully, 
it’s an area which is growing which other people 
are also interested in. I’m sure there will be more 
growth. As of now, deep learning is a hot subject, 
and related problems are, of course, growing 
quickly. And there are areas of pure math (and 
applied) which are growing quickly. Have an 
open mind. But in the end, you have to choose 
something that clicks with you and which you get 
[new] ideas about.

Professor Guth
I have done some [UROPS] myself, but not 

a huge number. I feel like when people I don’t 
know email me, there’s more who email me than 
I can take, I haven’t found a solution to that that 
I feel happy with. I get the impression from a lot 
of students that I talk with that students feel like 
a UROP is something totally different from a 
math class. My personal experience of it is that 
they're much closer, that kind of thinking when 
somebody’s teaching a class or taking a class, that 
kind of thinking when they’re doing a UROP, are 
almost the same. The basic situation is that there 
are some things that we’d like to understand that 
we don’t understand yet, and in class there are 
other people who have understood those things 
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at some point, so there are some more clues, but 
usually in a UROP there are also clues. There 
are math questions out there where we have 
no clue what to do, but usually if we give those 
to a UROP student they 
also have no clue what to 
do, and the UROPs that 
go well are where there 
are clues. So it’s not so 
different from class, and 
when we’re in class we 
could allow ourselves to 
be a little more open about 
our thoughts; to do the 
homework but also say, “Well, what do I think 
is an interesting question about this thing?” and 
I could try to think about it. Then, I could go to 
office hours, and say, “Well, I came up with this 
question and I tried to think about it a little bit but 
now I’m stuck over here, have you heard anything 
about that?” I feel that there could be something 
more [like a] continuum. So, the advice I usually 
give to undergrads about finding UROPs is to 
just start thinking that way in their classes and 
talk to people about things, and it’s going to be 
interesting anyways and probably going to be a 
good way to find an efficient UROP. 

It’s probably a little trickier to make a good 
UROP for someone with lower level/introductory 
classes, but I don’t think it’s impossible. But the 
other thing is that, I think in practice, what’s 
happening in the math department is that we 
have a lot of majors now who want to do math 
UROPs and it seems like there’s only so much 
professor time and postdoc time. So, given that 
situation, if there are two people who would like 
to do a UROP, and one of them has been around 
longer, it’s a little hard to justify not giving the 
UROP to that person who’s taken six classes and 
worked hard in order to make time to give a 
UROP [to someone] who’s only taken two classes. 
My impression of the biggest issue is just the total 
scale, if we’re going to be allocating UROPs.

[In terms of other department UROPs], there’s 
lots of interesting stuff going on at MIT. I noticed 
in the physics department there’s someone who 
was trying to make a large-scale UROP with 15 
people as a class; somehow organizing in such 

a way that everyone was doing research, but 
everyone had a part of it that was their own. If 
we want to reach the number of students that 
we want to, we might try to do things like that. 

Either [interdisciplinary 
or just math], but just 
somehow bigger. They’re 
all interesting; if you try 
doing a UROP in physics 
or chemistry or material 
science or computers then 
you’ll see that there will 
be some math that comes 
up in it but it won’t be 

just math, you’ll have to also be interested and 
involved in whatever the subject is. And I think 
that is pretty similar to what it’s like taking some 
experiments in math and bringing it out into 
industry or the public sector somewhere and 
trying to find a job and do something interesting 
with them. 

For doing pure math, I’d say there are a lot 
of classes that are research-like or have a range 
of open-ended projects. There's Math Project 
Lab (18.821) which is about doing research 
projects and there are a whole range of math 
seminars that are about doing some kind of 
reading projects, could be a research project. And 
almost all of these classes are designed so that 
they’re not a crazy amount of work for everyone 
who wants to take the class, but they’re designed 
so that you could put into it whatever you want 
to put into it. For example, in one of the CI-M 
classes, most of the student’s final projects aren’t 
research, but if you wanted to you could. In any 
case, they are like studying and presenting some 
relatively recent, interesting development in the 
subject. Which is very close to what research is. 
If you want to put a lot of effort into it and digest 
something that’s bigger and more difficult, then 
you can do that in that class. And the teacher 
will guide you. That’s probably a little bit more 
like what pure math research is than a UROP in 
another department. On the other hand if you’re 
interested in doing research where you apply 
math to other things, then a UROP in another 
department could be great.  

[In general], one thing is that it's great to 

" Have an open mind. 
But in the end, you have 
to choose something that 

clicks with you and which 
you get [new] ideas about."
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explore what you're interested in and to see what 
you’re excited about and what you find that you 
just want to keep spending time on doing. That's 
a great thing to see about yourself, that you can 
go out and appreciate doing X. There are many 
different signs/sides to the process of that. It could 
be that you enjoy trying to prove new theorems. 
It could be that you enjoy learning about what’s 
out there and reflecting about what would be a 
good question [to ask]. The other thing about 
research is that there really is a lot of getting 
stuck and, in classes, the professors would like 
to challenge the students to some extent but take 
some responsibility so that they don’t give them 
something where they'll just be stuck for 5 weeks. 
In research, the typical thing is that we’re stuck 
for long periods of time; it’s good to know that 
everybody goes through it. To get somewhere 
meaningful in probably any kind of endeavor, 
we have to go through a lot of being stuck. That's 
one thing: the emotional side of being stuck. The 
advice I give most often to my graduate students 
is to go back and forth between trying to make 
progress and being stuck, and stepping back and 
trying to understand, “Why are we stuck? What is 
the wall we’re running into? Describe that wall.” I 
try to do that too. For example, going back to the 
Kakeya problem, going back and forth between 
trying to make progress on the Kakeya problem 
and stepping back and asking, “Why is it that we 
have all had so much trouble making progress on 
the Kakeya problem?”

Professor Hahn
I do think that UROPs are very important. 

When I was an undergraduate here, I was very 
much influenced by the ability to have UROPs 
with professors. I had a UROP with Professors 
Mark Behrens and Clark Barwick over two 
consecutive years that really interested me and 
influenced the direction I went my whole life 
after that. It’s really a great thing to have the 
UROP program here. [However], I understand 
that getting a UROP is difficult. Every professor 

3 Mark Behrens was a professor at MIT and is currently a professor at the Department of Mathematics in the University of Notre 
Dame. His research focuses on the computational aspects of algebraic topology.
4 Clark Barwick was a professor at MIT and currently a professor at the University of Edinburgh. His research focuses on homo-
topy theory, algebraic K-theory, and higher category theory.

has different criteria for what kind of UROP 
students they take. In algebraic topology, there's 
a little bit of background necessary to do a 
worthwhile UROP. What I see students doing is 
doing directed reading programs with graduate 
students up until the point where they have 
a really good background, in particular when 
they've taken some upper-level graduate classes, 
which a lot of undergraduates here do towards 
the end of their time [as an undergraduate]. At 
that point, I think it’s really important for me to 
offer a good UROP. For my area of math, you 
need some background. You need to demonstrate 
that you have that background, [and] I'm always 
looking for students that have that advanced 
background in algebraic topology. 

Mark Behrens33 and Clark Barwick44 who 
were here when I was an undergraduate—and 
are no longer here—, they both did homotopy 
theory, so I still work with them to this day 
and we are in the same field. It's all because of 
their generosity with things like UROPs and the 
classes I took with them that led me to learn the 
stuff necessary to start those UROPs.

[In general], I understand there’s a lot of 
pressure here in the sense that there are a lot 
of really strong students. I certainly felt that 
pressure a lot as an undergraduate here. I think 
it's important to remember that you can do quite 
well as a research mathematician. You don't 
have to necessarily be the fastest or the most 
prepared. There's a lot of competition or pressure 
from fellow students here that it's [all the more] 
important to have some confidence in yourself 
that if you put in some work you can do well.

MATHEMATICS AND TECHNOLOGY
Questions: “What is the effect of technology on 
what the current generation of mathematicians 
have to study now? How important is knowing 
some computer science for mathematicians? How 
much do you use computers in your research? 
Which fields are most related to mathematics?”
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Professor Strang
I think it’s good to be able to do some things 

with a computer. To be able to do experiments 
with a computer and to think in that way—
which I didn’t really get. So I’m in linear algebra, 
but I’m not really in computational linear 
algebra. That’s not my thing. I'm the MathWorks 
professor; Mathworks focuses on computation 
very successfully. Professor Edelman has created 
the language Julia which is amazing that he 
could create a new and 
super fast language. And 
then Python came out 
for engineering. And I'm 
sure statistics, which uses 
the language R—but that’s 
an older one—I’m sure 
statistics has got a future 
super language coming up. 
Somebody will do that. It’s 
a world in which, when 
there's an open problem, 
a space to be filled, 
somebody jumps in, and 
sees a way to do it, [and 
does it].

Professor Guth
I don't really use any [technology or computer 

science]. I'm not that good with computers, and 
I don't like spending time on them that much; 
that's a personal thing. I guess I use search 
engines to search for papers on different stuff—
that is actually an amazing computer tool—and 
I think it's really somewhat better than the old 
system with very thick books and references to 
other papers. I wonder sometimes about using 
computers to, for example, look for examples 
for some of these problems. Like I've wondered 
about using computers to try to find interesting 
examples for the Kakeya problem. I haven't ever 
done it because I don't have the computer know-
how, but I'm curious about it. And I don't know 
very much about this stuff but there's a lot of stuff 
in the news about machine learning recently. So 
I'm curious about how much machine learning 
could tell us about the problems that I've worked 
on and been stuck on. 

Professor Hahn
I had a lot of friends who did computer 

science. I picked up some programming. I used 
to do some things over IAP, some competitions 
like Pokerbots that kept my coding skills sharp. 
I keep an academic interest in computer science. 
I like to read some literature in some parts of 
that, but I didn't take too much formal computer 
science as an undergraduate personally. 

[The importance of computer science] really 
depends on what you want 
to do. I think that's a great 
and really valuable career 
route you want to keep 
open, even if you want to 
be a pure mathematician, 
if you change your mind 
later. But I think I was 
lucky to not need that. I 
tried to be conscious of 
keeping my coding skills, 
and general knowledge (of 
computer science), up a 
little bit in part to have an 
alternative career option 

depending on whether this algebraic topology 
thing worked out. But for me it seems it’s worked 
out pretty well.

CONCLUSION
From our interview of the mathematics 

departments’ Professor Gilbert Strang, Professor 
Larry Guth, and Professor Jeremy Hahn, we hear 
their takes on mathematical research, both their 
own and for students at MIT. We have seen that 
industry is indeed an option for mathematicians, 
but becoming a research mathematician is also 
a possibility, especially for pure mathematicians. 
However, it is indeed more competitive. 

Nonetheless, the professors encourage people 
to pursue their interests, regardless of it being 
purely mathematics, some fields in relation to 
mathematics, or something else entirely. For 
mathematics students, Professors Strang, Guth, 
and Hahn recommended that students explore 
their strengths, be ready for setbacks, and focus 
on themselves, respectively. 

"There's a lot of 
competition or pressure 

from fellow students here 
that it's [all the more] 

important to have some 
confidence in yourself that 

if you put in some work 
you can do well."
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With regards to looking for UROPs at MIT, 
professors highlighted looking for students 
who have taken higher-level math classes. The 
professor also noted that computational skills 
are an advantage. However, while many research 
mathematicians use technology in their research, 
a significant amount of research is still done 
without it. 

We are very grateful to the professors for 
allowing us to interview them and for sharing 
their priceless experiences and advice. For the 
students reading this, we hope that this article has 
given you more insight into what mathematical 
research at MIT is like and answered commonly 
asked questions about UROPs, research, and 
more!
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Background
One of the longest-standing challenges in 

medicine is the ability to monitor and predict human 
behavior. Applications of behavior medicine include 
difficult problems such as detecting drug addiction 
relapse, monitoring patient recovery after surgery, 
or helping to predict suicide. Over the past decade, 
the widespread usage of mobile phones has created 
new opportunities for monitoring tools in the field of 
behavioral medicine (Insel, 2017; Melcher et al., 2020). 
Specifically, mobile phones allow for the passive, 
minimal interference, more precise, objective in-situ 
collection of data, specifically of one’s activity and 
daily behavior (e.g. sleep, exercise) (Onnela, 2021). 
The phenotyping problem, or the inability to precisely 
specify phenotypes is solved by smartphones – the use 
of this digital data to quantify individual-level human 
phenotype is known as digital phenotyping (Onnela, 
2021; Onnela, 2016; Insel, 2017). One’s daily behavior 
can give doctors clinical insight remotely into the 
intensity and progression of a patient’s disease, such 
as mental health or the recovery of cancer patients; 
this objective data can be incredibly significant for 
fields such as psychiatry as it represents a path to 
measurement-based care rather than care based solely 
on clinical judgment (Insel, 2017; Jain et al., 2015). For 
example, researchers have demonstrated that suicidal 
behavior could be monitored through Google search 
data (Gunn and Lester, 2013), and accelerometer 
data can be used to track activity in patients with 
cardiometabolic diseases (Jain et al., 2015). This can be 
incredibly important as doctors can continue to monitor 
a patient’s disease after their visit, especially critical in 
global health screenings. Furthermore, the need for 
an asynchronous telehealth solution that can increase 
access to care has been increasingly critical, as revealed 
during the COVID-19 pandemic (Melcher et al., 2020). 

Results
Overview of MobilePath

Despite this increasing use of mobile technology, 
a server platform for digital phenotyping designed 
to visualize and monitor health behavior for both 

physicians and clinical researchers does not exist. 
To address this need, our group has developed a 
data collection and assessment digital phenotyping 
platform, called MobilePath, which also includes an 
Android mobile application and server to store health 
and behavior measurements from mobile devices. 
MobilePath is an easy-to-use data collection and 
assessment platform designed for medical researchers 
and clinicians to better monitor behavior and be able to 
detect specific patterns in behavior that are associated 
with adverse behavior, such as substance use relapse, 
or detect specific psychopathology, such as depression.

Framework
The framework contains features for clinicians and 

patients to view medical measurements. Specifically, 
we have developed abstract visualizations for multiple 
health variables such as accelerometer periodic, 
accelerometer events, light sensor data, gyroscope 
orientation, circadian rhythm, phone call and SMS/
texting activity, mobility data, GPS movement, GPS 
log mobility, and phone usage. Figure 1 displays the 
patient and clinician user interface, specifically the 
measurements dashboard, and includes an example 
plot of the patient’s periodic accelerometer data 
collected from the user’s mobile device with the 
Android application. Users are asked to input a date 
range over which data is collected, and MobilePath 
visualizes the data from that time period. An example 
plot graphing the number of times a patient sent 
and received SMS messages over time is depicted 
in Figure 2. As individuals with social anxiety or 
loneliness have been found to use smartphones 
differently, such as having fewer SMS events and 
incoming calls, this data on SMS events can be useful 
for clinicians to identify social anxiety (Gao et al., 
2016). As shown in Figure 3, MobilePath also includes 
a visualization page for researchers. This visualization 
converts some features, specifically light sensor, GPS, 
log GPS, and battery life measurements, into a colored 
square. Specifically, all data features are scaled and 
normalized – either by probability (0 to 1) or by 
z-score, where z=0 is mapped to the value 0.5. This 
scaled and normalized value is then converted to an 
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RGB value from white (0, 0, 0) to blue (0, 0, 255). 
This visualization can be used for machine learning 
analyses by clinical researchers using MobilePath.

Security and Privacy
To avoid the typical pitfalls and risks of mobile 

health apps, which primarily concern personal privacy, 
MobilePath was designed with privacy in mind and 
operates only with the full consent of the patient 
(Onnela, 2016; Insel, 2017; Kröger, 2022). Multiple 
measures, which are explained to each participant at 
the time of the consent, are taken by MobilePath to 
protect patient privacy. All data sent from the phone 
to the server is de-identified and designated with a 
userid code. Additionally, microphone/sounds and 
camera data are not collected. While GPS location data 

is collected, the GPS coordinate is blurred by adding a 
random 100-mile offset, so that the participant's exact 
location cannot be ascertained. The server and analysis 
only keeps track of the relative movement of the 
phone, not the absolute coordinates. The participants' 
phone calls and SMS events are logged, but the phone 
numbers are scrambled (hashed) with a random key 
so that the phone numbers cannot be ascertained. 
The only information collected is the time, duration, 
and scrambled phone number of each call, and the 
time and scrambled phone number of each SMS, 
both sent and received. The server does not store any 
phone numbers; only how many unique numbers were 
called or received, which is used to inform a measure 
of social connectedness, are kept track of. In terms 
of data security, the data is stored on a password-
protected server, and all communication between 

Fig. 1. MobilePath’s patient website user interface of the measurement dashboard. The measurement dashboard includes all the data collected over a specific inputted date 
range of that specific patient. A plot of a user’s periodic accelerometer data is displayed and graphed on MobilePath from mobile sensor data.

Fig. 2. A plot of a user’s incoming and outgoing SMS events each hour displayed on MobilePath based on data collected from mobile sensor data from MobilePath’s 
Android application. 
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Fig. 3. A plot visualizing a 
patient’s data to be used by 
clients for machine learning 
analyses. Features, specifically 
light sensor, GPS measure-
ments, log GPS measurements, 
and battery life, are scaled 
and normalized into a prob-
ability or z-score value. This 
scaled and normalized value 
is then converted to an RGB 
value where a probability of 0 
is mapped to an RGB value of 
(0, 0, 0), and a probability of 1 
is mapped to an RGB value of 
(0, 0, 255). 

the participant's smartphone and MobilePath’s 
central server is encrypted with an SSL certificate.

Conclusion
MobilePath ultimately serves as a digital 

phenotyping platform that facilitates the monitoring 
and prediction of human behavior to improve clinical 
care and research. Future steps for MobilePath 
include conducting some pilot clinical studies later 
in 2023 and using the abstract visualizations along 
with deep learning algorithms to predict a user’s 
digital phenotype and detect specific behaviors, 
such as a user’s sleep habits, indicators of stress, 
depression, or anxiety, and scrolling/texting. 
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Nanosatellites are cheap to produce and launch; 
however, a lack of control after being released into 
orbit means nanosatellites typically have shorter 
lifespans than their larger counterparts. The MIT Space 
Propulsion Laboratory (SPL) has been developing 
modular electrospray thrusters that satisfy this need for 
small- scale satellite propulsion. Electrospray thrusters 
(Fig. 1) are compact engines that incorporate micro-
electromechanical systems (MEMS) to combine electric 
charge and charged fuel to create thrust. Such thrusters 
could provide control to operators on the ground, 
allowing them to maneuver satellites away from debris, 

raise satellite orbits to correct for atmospheric drag in 
low Earth orbit, and perform more complex missions.

The small scale and high efficiency of electrospray 
propulsion mean that mission planners can add 
modular thrusters to extend the mission life of a 
satellite (Greene, 2008). However, while electrospray 
propulsion has many benefits, the small size of 
an electrospray thruster presents challenges for 
manufacturing. Components like emitter arrays and 
fuel valves must be manufactured precisely, requiring 
complex microfabrication processes similar to 
computer chips. This research project focuses on how 
the SPL can reliably produce electrically actuated valves 

for electrospray thruster propellant control. These 
electrowetting valves initially separate an electrospray 
thruster's fuel tank and emitter (nozzle) until it needs 
to be fired. At that point, the thruster systems apply a 
charge across the valve, changing its hydrophobicity, 
allowing the fuel to reach the emitter and create thrust.

For the duration of a launch, thruster components can 
face more than 12 Gs of acceleration, intense vibration, 
and thermal cycling before reaching the ideal conditions 
of orbital microgravity (Krejci, 2016). Those forces can 
cause thruster valves to fail and allow fuel to reach 
the emitters prematurely, leading to malfunctions and 
reduced performance. These extreme conditions that the 

Fig. 1. Electrospray thrusters and emitter grid close-up (Krejci, 2016).

Fig. 2. Contact Angle Measurement of Water with a Sample Valve (See Fig. 3).
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Table 1. Merage Measured Contact Angle with Varied Curing Parameters.

thruster experiences and the micro-scale of fabrication 
make it challenging to manufacture reliable valves.

This project focuses on refining and standardizing 
the process for manufacturing the electrowetting 
valves. Each silicon valve substrate is spin coated 
in a special hydrophobic fluoropolymer. This 
fluoropolymer, called Fluoropel, is an electrowetting 
agent that allows the valve to change its interaction 

with fluids when an electrical field is applied (Kim et 
al., 2010). We can measure this interaction between 
the valve and fuel by the contact angle of a drop of 
fluid. Before the thruster needs to be fired, a large 
contact angle and high hydrophobicity are optimal so 
that fuel does not seep through the microscopic valve 
channels leading to the emit- ter. But when thrust is 
required, an electrical field can be applied to reduce 
the contact angle of the valve (Fig. 2) and allow fuel 
to pass through the valve and power the thruster.

So far, the project has been focused on initial tests 
of the impact of curing procedures on the contact 
angle between water and a valve test piece, as shown 
in figure two. The table below highlights the current 
results from contact angle testing. Chip set 1 tested 
the difference in curing times: 30 minutes at 180°C 
versus 20 minutes at 80°C and then 30 minutes at 
180°C. Because of the non-uniformity in the surface 
finish of the 30-minute valve (Fig. 3), chip set 2 was 
coated at the same conditions, 3000 rotations per 
minute (RPM) for five seconds, and cured for the same 
time as chip set 1. Chip set 2 had a uniform surface 
finish, so chip set 3 was coated under different spin 
coating conditions, 5000 RPM for 30 seconds, to test 
if any trends in contact angle between curing times 
persisted to the most extreme spin coating conditions.

Given the collected data in Table 1, the current 
conclusion is that the vendor-recommended curing 
setting of 30 minutes at 180°C is optimal, even at a more 
extreme coating of 5000 RPM. However, there is some 
uncertainty in the significance of the different curing 
procedures, given that two drops on the same chip could 
produce up to 12° of difference in measured contact angle.

The next step for the project is to follow a test 
matrix to characterize the contact angle based on 
spin coating parameters and find the optimal spin 
coating settings for the largest contact angle. The 
test matrix varies two independent components of 
the fluoropolymer coating procedure: spin duration 
and RPM. Therefore, a trend in contact angle should 
be observed by changing these parameters, and the 
combination with the largest contact angle will be 
chosen for future electrowetting valve manufacturing.
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Fig. 3. E7x7mm Valve Sample from Set 1 with Inconsistent Surface Finish.

After determining a suitable procedure for coating 
the valves, they will be environmentally tested to 
determine their performance at launch and determine 
if they are more reliable than previous versions. If they 
can withstand environmental testing consistently, the 
project focus will shift to producing more valves for 
SPL for future thruster production. However, if the 
valves are unreliable, more work will go into varying 
the curing settings and spin coating procedure to find 
a coating procedure that produces a robust valve.
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Abstract

This paper is an improved attempt to find a rank ≤ 23 mod 2 decomposition of the tensor describing

3 × 3 matrix multiplication. We investigate a much bigger set of possible symmetry restrictions and are

more systematic about what kinds of restrictions we test. Our results rule out the existence of a rank

≤ 23 decomposition for many more symmetry restrictions.

1 Introduction

Fast matrix multiplication essentially consists of

finding a low-rank decomposition of a ⟨n, k,m⟩matrix

multiplication tensor T ⟨n,k,m⟩, a n×k ×k ×m×m×n
array where

T ⟨n,k,m⟩i,j,j,k,k,i = 1 ∀i, j, k, and all other elements are 0.

A R-rank decomposition over a field F is a

(multi)set of matrix triplets D = {(A(r) ∈ Fn×k,B(r) ∈
Fk×m, C(r) ∈ Fm×n)}0≤r<R s.t.

T ⟨n,k,m⟩ = R−1∑
r=0 A

(r) ×B(r) ×C(r) (equivalently,

T⟨n,k,m⟩a,b,c,d,e,f = ∑R−1
r=0 A(r)a,bB

(r)
c,dC

(r)
e,f ∀a, b, c, d, e, f),

where × denotes the tensor product (equivalent to

numpy.multiply.outer() from NumPy).

Such a decomposition yields a O(N3 lognkm R)-
time divide-and-conquer algorithm for multiplying

two N × N matrices. [Bläser, 2013] The quantity

3 lognkmR is known as the running time exponent

and is commonly denoted ω. The smallest R such

that a R-rank decomposition of T ⟨n,m,k⟩ exists is

known as the rank of the tensor T ⟨n,m,k⟩.
Let ⟨n, k,m ∶ R⟩F be short for “a rank-R decom-

position of T ⟨n,k,m⟩ over field F”. [Strassen, 1969]

proved that the trivial algorithm for matrix multipli-

cation is not optimal, by finding a divide-and-conquer

algorithm that can be encoded as ⟨2,2,2 ∶ 7⟩Z 1 (ω ≈
2.807). The next improvement came from [Pan, 1978]

with ⟨70,70,70 ∶ 143640⟩Z (ω ≈ 2.795). Every record

algorithm afterward has used asymptotic inequalities

to nonconstructively prove that certain running time

exponents can be obtained (or approached arbitrarily

closely), instead of directly finding decompositions;

[Bläser, 2013] the current record achieves a running

time of O(N2.37188). [Duan et al., 2022]

While these asymptotic techniques allow such

algorithms achieve significantly lower asymptotic

running time exponents than any known decom-

positions of small tensors, they also render such
1By slight abuse of notation, what we mean here is that the decomposition is over Q but only uses coefficients in Z.
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algorithms too slow for any matrices encoun-

tered in practice; thus, there is still much de-

mand for small, explicitly constructed decomposi-

tions. Significant progress has been made in this

area in recent years, especially ⟨3,3,6 ∶ 40⟩Q (ω ≈
2.774) [Smirnov, 2013] and ⟨5,5,5 ∶ 97⟩Z (ω ≈ 2.842)

[Kauers & Moosbauer, 2022], and additional results

are catalogued at https://fmm.univ-lille.fr/. 2

We focus on T ⟨3,3,3⟩, since it is the smallest

tensor of the form T ⟨n,n,n⟩ whose rank is still un-

known; the best-known upper bound is 23 (ω ≈
2.854), first discovered by [Laderman, 1976], which

has not been beaten in 40+ years. Inspired by

[Ballard et al., 2018], we enforce symmetry restric-

tions on decompositions to significantly reduce search

space, which also motivates us to focus on tensors

T ⟨n,n,n⟩. Finally, we search over Z2 to further reduce

search space.

Our objective is to find (or rule out the existence

of) a rank ≤ 23 decomposition of T ⟨3,3,3⟩ over Z2,

under one of several different symmetry restrictions.

We find eight decompositions of rank 23 under four

different symmetry restrictions (shown in Section 5)

and rule out the existence of such decompositions for

many more symmetry restrictions, although we still

have not found a rank 22 decomposition.

1.1 Notation

We will only consider tensors T ⟨n⟩ ∶= T ⟨n,n,n⟩.
A decomposition D = {(A(i),B(i), C(i))}i is

a (multi)set of matrix triplets. Borrowing no-

tation from [Kolda & Bader, 2009], [[D]] denotes

∑(A,B,C)∈D A ×B ×C, which we call the “tensor val-

uation” of D. If D is a nested set of matrix triplets,

[[D]] denotes the tensor valuation of the flattened

version of D.

For a function f that transforms a matrix triplet

into another matrix triplet, f(D) is short for {f(d) ∶
d ∈D}.

For a set of functions F = {fi}i, ⟨f0, f1, . . .⟩ or ⟨F ⟩
denotes the generation of F , i.e. the set (group) of

all functions that are compositions of finite (possibly

empty) sequences of fi and f−1i . For a matrix triplet

x, ⟨F ⟩ (x) = {f(x)}f∈⟨F ⟩ is the orbit of x under ⟨F ⟩.
∣∣ denotes multiset sum (list concatenation but

with multisets). For a (multi)set of matrix triplets

X, ⟨F ⟩ (X) ∶= ∣∣x∈X ⟨F ⟩ (x). For Q as a set of sets of

matrix triplets, ∣∣Q denotes ∣∣q∈Qq, i.e. the concatena-
tion of the elements of Q.

For a string/sequence-like object S, S[a∶b] denotes
the subsequence Sa, . . . Sb−1, and S[∶b] is short for

S[0∶b].
Unless stated otherwise, the field F we are work-

ing over will be Z2.

2 Symmetry and Mod 2 Con-

straints

We will consider three kinds of transformations on

matrix triplets (A,B,C): [De Groote, 1978]

• cycle: △((A,B,C)) = (B,C,A);
• transpose: ⊺((A,B,C)) = (C⊺,B⊺,A⊺);
• trace (“sandwich”): φX,Y,Z((A,B,C)) =
(XAY −1, Y BZ−1, ZCX−1) for invertible

X,Y,Z ∈ Fn×n; 3

It can be checked manually that for each f ∈
{△,⊺,φX,Y,Z}, if a decomposition D satisfies [[D]] =
T ⟨n⟩, then [[f(D)]] = T ⟨n⟩. 4 Because of this prop-

erty, we say that the tensor T ⟨n⟩ is symmetric under

△, ⊺, and φX,Y,Z . By composition, T ⟨n⟩ is symmetric

under any function in the group Γ ∶= ⟨△,⊺,φX,Y,Z⟩.
2Interestingly, however, the current best-known running time exponent from a small tensor decomposition still seems to be⟨44,44,44 ∶ 36133⟩Q (ω ≈ 2.7734). [Pan, 1982]
3The Pσ function we used in our previous paper, for a permutation σ ∈ Sn, is equivalent to φS,S,S where S is the corresponding

permutation matrix of σ
4The symmetries under △ and ⊺ can be shown via the identities T ⟨n⟩a,b,c,d,e,f = T ⟨n⟩c,d,e,f,a,b and T ⟨n⟩a,b,c,d,e,f = T ⟨n⟩f,e,c,d,b,a. The

symmetry under φX,Y,Z can be shown by the fact that for arbitrary matrices P,Q,R, the “dot product” of T ⟨n⟩ with P ×Q×R,

∑a,b,c,d,e,f T ⟨n⟩a,b,c,d,e,fPa,bQc,dRe,f , equals trace(PQR), which equals trace((XPY −1)(Y QZ−1)(ZRX−1)) via algebraic prop-

erties of the trace function.
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2.1 Motivation for symmetry restric-

tions

Because T ⟨n⟩ is symmetric under each f ∈ Γ, we

might guess that there exists some decomposition D

of T ⟨n⟩ that happens to satisfy D = f(D) for some

f ; if this is true, we say that the decomposition D is

symmetric under f . Such a decomposition would be

much easier to find than an arbitrary decomposition

of T ⟨n⟩, since there are usually far fewer symmetric

decompositions than arbitrary decompositions, up to

any given rank.

Furthermore, most explicitly constructed low-

rank decompositions of T ⟨n⟩ happen to have some

kind of symmetry. [Strassen, 1969] corresponds to

T ⟨2⟩ = ⟨△,φ
F=[0 1

1 0 ],F,F
⟩ ({(I2, I2, I2) ,

([ 0 0
1 1 ], [ 1 0

0 0 ], [ 0 1
0 −1 ]) over Z, and several rank-23 de-

compositions of T ⟨3⟩, including the first to be dis-

covered [Laderman, 1976], have nontrivial symmetry.

[Ballard et al., 2018]

2.2 Motivation for working over mod

2

The most sought-after low-rank decompositions of

T ⟨n⟩ are those over Z, as the algorithms they yield

have lower constant factors and better numerical sta-

bility, which are important in practice. Further-

more, most explicit low-rank decompositions of cer-

tain T ⟨n⟩ (and more general T ⟨n,k,m⟩) that have been
found so far happen to be over Z. [Strassen, 1969]

[Laderman, 1976] [Pan, 1978] [Ballard et al., 2018]

Such decompositions are extremely difficult to

find. Luckily, using properties of modular arithmetic,

any decomposition of T ⟨n⟩ over Z must also be a de-

composition over Z2, so searching mod 2 can rule out

many potential decompositions over Z while vastly

reducing search space. Interestingly, Strassen’s al-

gorithm may have been obtained by first solving a

system of equations mod 2, then extending it to Z.
[Landsberg, 2019]

Disclaimer: searching over mod 2 cannot de-

termine anything about the existence of a non-

integer decomposition, or a decomposition symmet-

ric over some function involving non-integers, ex.

φ
X= 1

2 [ −1
√
3−√3 −1 ],X,X

.

Furthermore, if a decomposition symmetric un-

der some functions f ∈ Γ is found over mod 2, care

must be taken when extending it to Z, as there may

be multiple functions that are equivalent to f mod

2 but different over Z, and/or the orbits of matrix

triplets generated by the symmetry group of the de-

composition may have different sizes in mod 2 vs. in

Z.

3 Search problem and algo-

rithm

For some integers n,R and some set F ⊆ Γ, we

want to find some decomposition D of rank ≤ R s.t.

[[D]] = T ⟨n⟩ and D = f(D) for all f ∈ F .

These constraints on D immediately imply

⟨F ⟩ (d) ⊆ D ∀d ∈ D; thus, D must be a concate-

nation of orbits of individual matrix triplets under

⟨F ⟩. Our search problem is then equivalent to find-

ing a set of orbits Q ⊆ Θ ∶= {⟨F ⟩ (r) ∶ r ∈ (Fn×n)3} s.t.
[[∣∣Q]] = ∑q∈Q [[q]] = T ⟨n⟩ and ∣∣∣Q∣ = ∑q∈Q ∣q∣ ≤ R;

then D =∣∣ Q. Since we are working over mod 2,

WLOG we can assume Q contains distinct orbits.

3.1 Nullspace compression

It can be shown that for any decomposition D and

function f ∈ {△,⊺,φX,Y,Z}, applying f on D trans-

forms [[D]] linearly: there is a matrix Mf s.t.!!!!!→[[f(D)]] =Mf
!!!→[[D]] for any decompostion D, where!→

T denotes vectorization of a tensor T . Since linear

transformations are closed under composition, this is

also true for any f ∈ Γ.
Thus, for any T = [[q]] for an orbit q ∈ Θ, we have!→

T =Mf
!→
T ∀f ∈ F

⇒ !→T ∈ nullspace
⎛⎜⎜⎜⎝
W ∶=

⎡⎢⎢⎢⎢⎢⎢⎣
⋮

Mf − I
⋮

⎤⎥⎥⎥⎥⎥⎥⎦f∈F

⎞⎟⎟⎟⎠
. Performing

row reduction on W yields a basis matrix B and a list

of indices β s.t. for any
!→
T ∈ nullspace (W ), !→T = B!→v

3
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for unique !→v =
⎡⎢⎢⎢⎢⎢⎢⎣
⋮

(!→T )βi⋮
⎤⎥⎥⎥⎥⎥⎥⎦i
; we call !→v the compression

of
!→
T ∈ nullspace (W ) and denote it as

↛
T . We can then

replace our search condition ∑q∈Q [[q]] = T ⟨n⟩ with
∑q∈Q
↛[[q]] =↛T ⟨n⟩ and deal with compressed tensors

instead of tensors themselves.

Letting ei,j denote the n×n matrix with 1 at (i, j)
and 0 everywhere else, {ea,b × ec,d × ee,f}a,b,c,d,e,f
forms a basis for all 6-dimensional tensors of side

length n, so Mf can be constructed by column-wise

concatenating tensors [[f ((ea,b,ec,d,ee,f))]].
3.2 Prefix matching

Before proceeding with the search algorithm, we

choose a small number b and see if there exists a

solution Q s.t.
↛[[∣∣Q]] and↛T ⟨n⟩ match at the first b

bits.

We can solve this decision problem with dynamic

programming. To simplify the problem, we allow Q

to have duplicate orbits.

Define Λ(r) denote the set of all possible b-bit

prefixes of all Q ⊆ Θ s.t. ∣Q∣ ≤ r; then we have set

Λ(0) = {!→0 } and Λ(r) = {v⊕↛[[q]][∶b] ∶ q ∈ Θ, ∣q∣ ≤ r, v ∈
Λ(r − ∣q∣)}. The idea is to fix one of the elements of

a Q with an orbit of rank r and recurse on the rest

of the orbits.

To simplify the dynamic programming, we allow

Q to have duplicate orbits, so Λ(r) may contain un-

necessary bit-vectors, but this does not affect correct-

ness and does not significantly affect running time.

The asymptotic time complexity of this procedure is

O(2b ⋅ ∣Θ∣ ⋅ R), since each Λ(r) must have size ≤ 2b,

and at most ∣Θ∣ many q and 2b many v for each q are

considered while constructing Λ(r). However, since

most orbits in Θ have relatively large rank, the actual

running time is usually much lower.

After this procedure, if
↛T ⟨n⟩[∶b] /∈ Λ(r) for any

0 ≤ r ≤ R, we know there is no solution Q for the

original search problem. Due to time and memory

constraints, we run this dynamic programming for

each b = 1 . . .25, terminating early if for some b we

rule out the possibility of a solution to the search

problem.

3.3 Single-orbit optimization

We collect all orbits q ∈ Θ of rank ≤ R and group

them by their compressed tensor valuation
↛[[q]]. In

each group, we choose the orbit with smallest rank,

and break ties by smallest code number, where the

code number of a matrix triplet (A,B,C) is defined

as $((A,B,C)) ∶= #(A) + #(B)2(n2) + #(C)2(2n2),
with #(M) ∶= ∑0≤i<n2 M⌊ i

n ⌋,i mod n2
i. We also re-

move every orbit with an all-0s compressed tensor

valuation.

The remaining orbits are called canonical ; we will

only work with these orbits, since given any tensor de-

composition, one can always replace each triplet with

its respective representative canonical orbit, and pre-

serve tensor valuation without increasing rank.

3.4 Meet-in-the-middle

We use a meet-in-the-middle (MITM) search strat-

egy, which relies on the property [[Q∣∣Q′]] = [[Q]] +
[[Q′]].

• Create two sets S̆, S s.t. {Q̆∣∣Q ∶ Q̆ ∈ S̆,Q ∈ S}
contains all Q we want to search over; 5

• Store the elements of S̆ in a dictionary M̆ =
{↛[[Q̆]] → Q̆ ∶ Q̆ ∈ S̆} with equal keys resolved

by choosing a Q̆ with minimal rank;

• Iterate over each Q ∈ S and query if v =↛T ⟨n⟩−↛[[Q]] is a key in the dictionary: if so, then

Q =M .get(v)∣∣Q is a decomposition of T ⟨n⟩;
3.4.1 Finding a meet-in-the-middle scheme

To find such S̆, S, we partition the set of allQ we want

to search over by what we call the profile of an orbit

set, defined as ! (Q) = [(#q ∈ Q s.t. ∣q∣ = k)]0≤k<K ,
5Unlike in our previous paper, here we only use one pair of sets instead of multiple pairs, to make the MITM simpler.
6Note that ! (Q)0 = 0 since an orbit cannot have size 0.
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where K = 1 + maxq∈Θ ∣q∣; a profile is essentially a

histogram of orbit sizes. 6

Using the fact that ! (Q∣∣Q′) = ! (Q) + ! (Q′),
where + here denotes element-wise addition, we cre-

ate two sets of profiles P̆ , P s.t. {p̆ + p ∶ p̆ ∈ P̆ , p ∈ P}
contains all possible profiles we need to consider; then

construct S̆ = {Q ∶ ! (Q) ∈ P̆}, S = {Q ∶ ! (Q) ∈ P}.
Let H = ! (Θ) be the histogram of orbit sizes of

the set of all orbits. Since we are working over mod 2,

duplicate orbits cancel each other out in tensor valu-

ation, so WLOG we only need to consider profiles p

s.t. pk ≤Hk for each k. Let P be the set of all such p

with the additional constraint ∑k kpk ≤ R (i.e. total

rank is ≤ R): this is the set of all profiles we need to

consider, and it can be generated by DFS.

Given a profile p, the expression c (p) =
∏0≤i<K (Hk

pk
) is the number of sets of orbits with pro-

file p. In a later section we introduce methods to

make a query on the dictionary M̆ run in practi-

cally constant time. Thus, the total cost of our al-

gorithm will be roughly proportional to ∣S̆∣ + ∣S∣ =
∑p∈P̆ c(p)+∑p∈P c(p). We call this the “MITM cost”

and denote it as ω(P̆ , P ). We seek to minimize it

subject to the completeness constraint P ⊆ {p̆ + p ∶
p̆ ∈ P̆ , p ∈ P} and an arbitrarily chosen memory con-

straint ∣S̆∣ = ∑p∈P̆ c(p) ≤m = 5 ⋅ 108.
Any optimal solution can be constructed as fol-

lows: for each p ∈ P , choose some pair of profile

a(p), b(p) ∈ P s.t. a(p) + b(p) = p; then set P̆ = {a(p) ∶
p ∈ P}, P = {b(p) ∶ p ∈ P}. Essentially, we specify

some method of creating each p ∈ P using a sum-pair,

then construct P̆ , P to contain all necessary profiles

to satisfy this specification without including extra

unnecessary profiles.

We use hill climbing to choose these pairs and ob-

tain a good heuristic solution:

• Put all profiles of P in some arbitrary ordered

list L and initialize P̆ ← ∅, P ← ∅;
• For each p in L, find a pair a, b ∈ P minimizing

ω(P̆ ∪{a}, P ∪{b}) and satisfying ∣P̆ ∪ {a}∣ ≤m,

then add a to P̆ and b to P ;

• Repeat the above steps 5000 times, each time

swapping a random pair of elements in L and

keeping this change if it produces a solution

with equal or less total cost

3.4.2 Fast queries

After creating the dictionary M̆ ∶= {↛[[Q̆]] → Q̆ ∶
Q̆ ∈ S̆}, we construct bitsets of all keys of M

at specific chunks: specifically, we construct Ξ̆w ={k[wW ∶(w+1)W ] ∶ key k in M̆} for each 0 ≤ w < ⌈ BW ⌉,
where B is the length of the compressed tensors,

W = 32 is a constant, and compressed tensors are

padded with 0s as needed.

When querying whether a key k exists in M̆ , we

first query for each w whether k[wW ∶(w+1)W ] is in Ξ̆w

(which is done in constant time); if the answer is yes

for all k, then we binary search for k among the keys

of M̆ ; otherwise we immediately know k is not in M̆ .

In the test cases we run, only about 1
1000 or less of

all queries pass these checks for all w, and we usually

manage to process 10-50 million queries per second.

3.5 Miscellaneous Optimizations

We use multi-key quicksort to sort the keys of M̆ by

(inverse) lexicographic order (we order two bit strings

a, b of equal length by their last bit, tiebreak by their

next last bit, and so on).

Key-value pairs in M̆ are stored implicitly. For

each profile p ∈ P̆ , we enumerate all orbit sets Q̆ with

profile p via DFS; instead of storing the entire orbit

set Q̆, we split it into κ ∪ {q}, where q is the most

recent matrix triplet processed in the DFS. We col-

lect all distinct orbit subsets κ encountered during

the DFSs of all profiles into a list K. We associate

each orbit q ∈ Θ with some arbitrary representative

matrix triplet t s.t. ⟨F ⟩ (t) = q, and finally store each

orbit set Q̆ = κ∪{q} as a number i(23n2)+$(q), where
Ki = κ and $(q) denotes the code number of q (defined

in an earlier section). As the number of elements in

K is usually a small fraction (usually about 1
1000 ) of

the number of keys in M̆ , storing keys this way saves
7This entire process is much simpler than is was in our previous paper.
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a significant amount of memory. 7

3.6 Properties of search results

Our algorithm satisfies the following lemma:

Lemma 1. If there exists a decomposition ∣∣Q of T ⟨n⟩
of rank ≤ R for some Q ⊆ Θ, then some (possibly

nonequivalent) decomposition of rank ≤ R must be re-

turned by the search algorithm.

Proof. Let Q be Q but with each orbit replaced with

its corresponding canonical orbit. Then ∣∣Q is a de-

composition of T ⟨n⟩ with rank ≤ ∣∣∣Q∣ ≤ R, and Q ⊆ Θ.

Let p = ! (Q). By the completeness requirement of

the MITM scheme, there must exist some p̆ ∈ P̆ , p ∈ P
s.t. p = p̆ + p. Q can then be partitioned into Q̆,Q

s.t. ! (Q̆) = p̆ and ! (Q) = p.
Since M̆ must contain the compressed tensor valu-

ations of all orbit sets with profile in P̆ ,
↛[[Q̆]]must be

a key contained in M̆ ; let Q̆′ = M̆ .get(↛[[Q̆]]). Since

during the construction of M̆ we specified that equal

keys are resolved by choosing a value with minimal

rank, ∣∣∣Q̆′∣ ≤ ∣∣∣Q̆∣.
Since we iterate over every orbit sets with a pro-

file in P , at some point we will process Q. Since

Q = Q̆∣∣Q,
↛[[Q]] =↛[[Q̆]] +↛[[Q]] =↛T ⟨n⟩, so querying

the key
↛T ⟨n⟩−↛[[Q]] in M̆ will yield the value Q̆′, and

the algorithm will return Q′ = Q̆′∣∣Q, which satisfies

[[∣∣Q′]] = T ⟨n⟩ and ∣∣∣Q′∣ ≤ ∣∣∣Q∣ ≤ R.

Taking the contrapositive, if the search algorithm

does not yield a decomposition of rank ≤ R, then such

a decomposition does not exist.

Since our meet-in-the-middle scheme covers all or-

bit sets of total rank ≤ R, we can replace R in the

lemma with any quantity smaller than R, and the

lemma would still hold. This yields the following

corollary:

Corollary 1. Let R∗ be the smallest possible rank

for a solution Q to the search problem. If R∗ ≤ R,

then the search algorithm is guaranteed to output a

solution with rank R∗.
Finally, we note an important disclaimer:

the search algorithm may output a solution

with rank >R; this is possible since the set

{p̆ + p ∶ p̆ ∈ P̆ , p ∈ P} may contain extraneous profiles

with rank > R. This is not a problem since the al-

gorithm is allowed to output multiple solutions, only

one of which has to be optimal.

4 Enumerating Symmetry Sub-

groups

For all of our search results, we set n = 3 (i.e. we

searched for decompositions of T ⟨3⟩).
All symmetry sets F we consider will be of the

form S ∪ {f} for a small subset S ⊆ Γ chosen before-

hand and an arbitrary element f ∈ Γ. For this paper
we have chosen S = ∅,{△},{△,⊺}.
4.1 Conjugacy

Let G be the set of all functions that a given de-

composition D is symmetric to. We have that G

must be a group, and that conjugation by an arbi-

trary function that transforms matrix triplets yields

(gGg−1)(gD) = gD, so the existence of a rank ≤ R

decomposition of T ⟨n⟩ symmetric over G implies the

existence of rank ≤ R decomposition over any conju-

gate of G. Thus, WLOG we only need to consider

symmetry groups that are distinct up to conjugacy.

4.2 Optimizations

For a fixed set of functions S ⊆ Γ, we want to enumer-

ate all ⟨S ∪ {f}⟩ for f ∈ Γ that are distinct up to con-

jugacy. Doing this naively by constructing ⟨S ∪ {f}⟩
for every f and testing conjugacy between pairs of

such groups will be slow, as even though ∣S ∪ {f}∣ is
small, ∣ ⟨S ∪ {f}⟩ ∣ can be as large as ∣Γ∣ = 28449792. 8

However, we can use several group-theoretic observa-

tions to take advantage of the fact that all generating

8In fact, Γ = ⟨△, φ[1 0 1
1 1 0
0 0 1

],I,I ○ ⊺⟩.
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sets we deal with are small, and greatly reduce mem-

ory and time usage:

• For any group G and set S, G ⊇ S⇔ G ⊇ ⟨S⟩;
• For any element g and set S, ⟨gSg−1⟩ =
g ⟨S⟩ g−1;

These lemmas directly imply the following conju-

gacy tests:

• g ⟨S⟩ g−1 = ⟨T ⟩ ⇔ (gSg−1 ⊆ ⟨T ⟩ and ⟨S⟩ ⊇
g−1Tg);

• ⟨S⟩ = g ⟨S⟩ g−1 ⇔ ⟨S⟩ ⊇ gSg−1 (since ∣ ⟨S⟩ ∣ =
∣g ⟨S⟩ g−1∣);

Furthermore, to detect whether ⟨S⟩ and ⟨T ⟩ are
conjugate to each other, we only need to test whether

g ⟨S⟩ g−1 = ⟨T ⟩ for g that are left coset representatives

of NΓ (⟨S⟩), the normalizer of ⟨S⟩ in Γ.

Additionally, we do not need to iterate over every

f to find all ⟨S ∪ {f}⟩ up to conjugacy, due to the

following identities:

• ⟨S ∪ {f}⟩ = ⟨S ∪ {fk}⟩ for k coprime to ord(f);
• ⟨S ∪ {f}⟩ = ⟨S ∪ {sf}⟩ = ⟨S ∪ {fs}⟩ for s ∈ ⟨S⟩;
• η ⟨S ∪ {f}⟩η−1 = ⟨S ∪ {ηfη−1}⟩ for η ∈
NΓ (⟨S⟩);

Thus, after processing some f , we can transform

f to fk, sf, fs, ηfη−1 for k, s,η satisfying the con-

straints above, then transform those elements as such

and repeat until all reachable elements have been ob-

tained, and skip these elements while enumerating

subgroups.

Finally, to store the elements of Γ efficiently, we

note that ⊺ ○ △ = △2 ○ ⊺, △ ○ φA,B,C = φB,C,A ○ △,
and ⊺ ○ φA,B,C = φ(A−1)⊺,(C−1)⊺,(B−1)⊺ ○ ⊺, implying

Γ = {φA,B,C ○△c ○ ⊺t ∶ invertible A,B,C ∈ Z2
3×3;

0≤ c < 3; 0 ≤ t < 2; thus, each element of Γ can be

stored with a O(1)-space canonical representation.

5 Solutions

For each S = ∅,{△},{△,⊺}, the number of distinct

subgroups ⟨S ∪ {f}⟩ up to conjugacy is 60, 73, and 43

respectively. For each F we tested, we initialized R to

23 and ran the dynamic programming for b = 1 . . .25;
if no such b ruled out the possibility of a solution, we

then repeatedly decremented R until the MITM cost

was at most 500 billion, then ran the search algorithm

for the resulting rank R. 9

Below we list all decompositions of T ⟨3⟩ that

we managed to find, as well as the conjugacy rela-

tions between their symmetry subgroups. We denote

jGj−1 as j ★G.

Several of the symmetries below happen to be

conjugate to GBallard = ⟨△,φ
A=[0 0 1

1 0 1
0 1 1

],A,A
⟩, which is

the mod 2 version of ⟨△,φ
α=[0 0 −1

1 0 −1
0 1 −1 ]∈Z3×3,α,α

⟩, under
which a rank-23 decomposition of T ⟨3⟩ over Z was

found by [Ballard et al., 2018].

All solutions listed here except the last one have

rank 23; the last solution has rank 27.

9We used the same computer as last time (2019 MacBook Pro, 2.3 GHz 8-Core Intel Core i9, 16 GB 2667 MHz DDR4), but
a different compiler flag that offers more memory: -Xmx30g.
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S = ∅:

⟨F ⟩ = . . . conjugacy D = ⟨F ⟩ (E), where E = . . .
⟨φ[1 0 1

1 1 0
0 0 1

],I,I ○△⟩ = ⎛⎜⎝φ[0 1 1
0 0 1
1 0 1

],[0 1 1
1 0 0
1 0 1

],[1 1 0
0 1 0
1 0 1

] ○ ⊺
⎞⎟⎠ ★GBallard {([ 0 1 1

0 0 0
0 1 1
], [ 0 0 0

0 0 0
1 1 0
], [ 1 1 0

0 0 0
0 0 0
])

([ 1 0 1
1 0 1
0 0 0
], [ 1 0 0

1 0 0
0 0 0
], [ 1 0 1

0 0 0
0 0 0
])

([ 1 0 1
1 0 1
0 1 1
], [ 1 0 0

0 1 1
1 1 1
], [ 1 1 1

0 0 0
0 1 0
])

([ 0 1 1
0 1 1
0 1 1
], [ 1 1 1

0 0 0
1 1 1
], [ 0 0 0

0 0 0
0 1 0
])

([ 1 0 1
1 1 1
0 0 1
], [ 1 0 0

0 1 1
0 0 1
], [ 1 0 0

0 1 1
0 0 1
])}

{([ 1 0 0
1 0 0
0 0 0
], [ 1 0 1

1 0 1
0 0 0
], [ 1 0 0

0 0 0
0 0 0
])

([ 1 1 1
1 0 0
0 1 1
], [ 0 1 0

0 1 0
1 1 1
], [ 1 0 0

0 1 0
0 1 0
])

([ 0 0 0
0 1 0
0 1 0
], [ 1 1 1

1 1 1
1 1 1
], [ 1 1 0

0 0 0
0 0 0
])

([ 0 0 0
0 1 1
0 1 1
], [ 0 0 0

0 0 0
1 1 1
], [ 0 1 0

0 1 0
0 1 0
])

([ 1 0 1
1 1 0
0 0 1
], [ 1 0 0

0 1 0
0 0 1
], [ 1 0 0

0 1 0
0 0 1
])}

S = {△}:
⟨F ⟩ = . . . conjugacy D = ⟨F ⟩ (E), where E = . . .

⟨△,φ[1 0 1
1 1 0
0 0 1

],[1 0 1
1 1 0
0 0 1

],[1 0 1
1 1 0
0 0 1

]⟩ = ⎛⎜⎝φ[1 1 0
0 1 0
1 0 1

],[1 1 0
0 1 0
1 0 1

],[1 1 0
0 1 0
1 0 1

] ○ ⊺
⎞⎟⎠ ★GBallard {([ 0 0 0

1 1 1
1 1 1
], [ 1 1 0

1 1 0
1 1 0
], [ 0 1 0

0 0 0
0 0 0
]) ,

([ 1 0 1
1 1 0
0 0 1
], [ 1 0 1

1 1 0
0 0 1
], [ 1 0 1

1 1 0
0 0 1
]) ,

([ 1 0 0
0 0 0
0 0 0
], [ 1 0 0

0 0 0
0 0 0
], [ 1 0 0

0 0 0
0 0 0
]) ,

([ 0 1 0
0 1 0
0 1 0
], [ 0 1 0

0 1 0
0 1 0
], [ 0 1 0

0 1 0
0 1 0
]) ,

([ 1 0 1
1 0 1
0 1 0
], [ 1 0 1

1 0 1
0 1 0
], [ 1 0 1

1 0 1
0 1 0
])}

{([ 1 1 0
1 1 0
1 1 0
], [ 0 0 0

1 1 1
1 1 1
], [ 0 1 0

0 0 0
0 0 0
]) ,

([ 1 0 1
1 1 1
0 0 1
], [ 1 0 1

1 1 1
0 0 1
], [ 1 0 1

1 1 1
0 0 1
]) ,

([ 1 0 1
0 0 0
0 0 0
], [ 1 0 1

0 0 0
0 0 0
], [ 1 0 1

0 0 0
0 0 0
]) ,

([ 1 1 0
1 0 0
0 1 0
], [ 1 1 0

1 0 0
0 1 0
], [ 1 1 0

1 0 0
0 1 0
]) ,

([ 0 0 0
0 1 0
0 1 0
], [ 0 0 0

0 1 0
0 1 0
], [ 0 0 0

0 1 0
0 1 0
])}

⟨△,φ[0 1 0
1 0 0
0 0 1

],I,I ○ ⊺⟩ not conjugate to GBallard {([ 0 1 1
1 1 1
1 1 1
], [ 1 1 1

0 1 1
1 1 1
], [ 1 1 1

1 0 1
1 1 1
]) ,

([ 0 0 0
1 0 1
1 0 1
], [ 0 0 0

0 1 1
0 1 1
], [ 1 0 1

0 0 0
1 0 1
]) ,

([ 0 0 0
1 1 1
1 1 1
], [ 1 0 1

0 1 1
1 1 1
], [ 1 0 1

1 0 1
1 0 1
]) ,

([ 1 1 1
1 1 1
1 1 1
], [ 1 1 1

1 1 1
1 1 1
], [ 1 1 1

1 1 1
1 1 1
]) ,

([ 1 0 1
0 0 0
0 0 0
], [ 1 0 1

0 0 0
0 0 0
], [ 1 0 1

0 0 0
0 0 0
])}

{([ 1 0 1
1 1 1
1 1 1
], [ 0 1 1

1 1 1
1 1 1
], [ 1 1 1

1 0 1
1 1 1
]) ,

([ 0 0 0
0 1 1
0 1 1
], [ 0 1 1

0 0 0
0 1 1
], [ 1 0 1

0 0 0
1 0 1
]) ,
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], [ 1 0 1

1 1 0
0 0 1
], [ 1 0 1

1 1 0
0 0 1
]) ,

([ 1 0 0
0 0 0
0 0 0
], [ 1 0 0

0 0 0
0 0 0
], [ 1 0 0

0 0 0
0 0 0
]) ,

([ 0 1 0
0 1 0
0 1 0
], [ 0 1 0

0 1 0
0 1 0
], [ 0 1 0

0 1 0
0 1 0
]) ,

([ 1 0 1
1 0 1
0 1 0
], [ 1 0 1

1 0 1
0 1 0
], [ 1 0 1

1 0 1
0 1 0
])}

{([ 1 1 0
1 1 0
1 1 0
], [ 0 0 0

1 1 1
1 1 1
], [ 0 1 0

0 0 0
0 0 0
]) ,

([ 1 0 1
1 1 1
0 0 1
], [ 1 0 1

1 1 1
0 0 1
], [ 1 0 1

1 1 1
0 0 1
]) ,

([ 1 0 1
0 0 0
0 0 0
], [ 1 0 1

0 0 0
0 0 0
], [ 1 0 1

0 0 0
0 0 0
]) ,

([ 1 1 0
1 0 0
0 1 0
], [ 1 1 0

1 0 0
0 1 0
], [ 1 1 0

1 0 0
0 1 0
]) ,

([ 0 0 0
0 1 0
0 1 0
], [ 0 0 0

0 1 0
0 1 0
], [ 0 0 0

0 1 0
0 1 0
])}

⟨△,φ[0 1 0
1 0 0
0 0 1

],I,I ○ ⊺⟩ not conjugate to GBallard {([ 0 1 1
1 1 1
1 1 1
], [ 1 1 1

0 1 1
1 1 1
], [ 1 1 1

1 0 1
1 1 1
]) ,

([ 0 0 0
1 0 1
1 0 1
], [ 0 0 0

0 1 1
0 1 1
], [ 1 0 1

0 0 0
1 0 1
]) ,

([ 0 0 0
1 1 1
1 1 1
], [ 1 0 1

0 1 1
1 1 1
], [ 1 0 1

1 0 1
1 0 1
]) ,

([ 1 1 1
1 1 1
1 1 1
], [ 1 1 1

1 1 1
1 1 1
], [ 1 1 1

1 1 1
1 1 1
]) ,

([ 1 0 1
0 0 0
0 0 0
], [ 1 0 1

0 0 0
0 0 0
], [ 1 0 1

0 0 0
0 0 0
])}

{([ 1 0 1
1 1 1
1 1 1
], [ 0 1 1

1 1 1
1 1 1
], [ 1 1 1

1 0 1
1 1 1
]) ,

([ 0 0 0
0 1 1
0 1 1
], [ 0 1 1

0 0 0
0 1 1
], [ 1 0 1

0 0 0
1 0 1
]) ,
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([ 0 0 0
1 1 1
1 1 1
], [ 0 1 1

1 0 1
1 1 1
], [ 1 0 1

1 0 1
1 0 1
]) ,

([ 1 1 1
1 1 1
1 1 1
], [ 1 1 1

1 1 1
1 1 1
], [ 1 1 1

1 1 1
1 1 1
]) ,

([ 0 1 1
0 0 0
0 0 0
], [ 0 0 0

1 0 1
0 0 0
], [ 1 0 1

0 0 0
0 0 0
])}

S = {△,⊺}:
⟨F ⟩ = . . . conjugacy D = ⟨F ⟩ (E), where E = . . .

⟨△,⊺,φ[0 1 0
1 0 0
0 0 1

],[0 1 0
1 0 0
0 0 1

],I⟩ = ⎛⎜⎝φ[1 0 1
0 1 1
1 1 1

],[1 0 1
0 1 1
1 1 1

],[1 0 1
0 1 1
1 1 1

]
⎞⎟⎠ ★ ⟨△,φ[0 1 0

1 0 0
0 0 1

],I,I ○ ⊺⟩ {([ 0 0 0
0 0 0
0 0 1
], [ 0 0 0

0 0 0
0 0 1
], [ 0 0 0

0 0 0
0 0 1
]) ,

([ 1 0 0
0 0 0
0 0 0
], [ 1 0 0

0 0 0
0 0 0
], [ 1 0 0

0 0 0
0 0 0
]) ,

([ 0 1 1
0 0 0
0 0 0
], [ 0 0 0

1 0 1
0 0 0
], [ 1 0 1

0 0 0
0 0 0
]) ,

([ 0 1 1
0 0 0
0 1 0
], [ 0 0 0

1 0 1
1 0 0
], [ 1 0 1

0 0 0
1 0 0
]) ,

([ 0 1 1
1 0 1
1 1 1
], [ 0 0 0

0 0 0
1 0 0
], [ 0 0 1

0 0 0
0 0 0
])}

{([ 0 0 0
0 0 0
0 0 1
], [ 0 0 0

0 0 0
0 0 1
], [ 0 0 0

0 0 0
0 0 1
]) ,

([ 0 1 0
0 0 0
0 0 0
], [ 0 0 0

1 0 0
0 0 0
], [ 1 0 0

0 0 0
0 0 0
]) ,

([ 1 0 1
0 0 0
0 0 0
], [ 1 0 1

0 0 0
0 0 0
], [ 1 0 1

0 0 0
0 0 0
]) ,

([ 1 0 1
0 0 0
1 0 0
], [ 1 0 1

0 0 0
1 0 0
], [ 1 0 1

0 0 0
1 0 0
]) ,

([ 1 0 1
0 1 1
1 1 1
], [ 0 0 0

0 0 0
1 0 0
], [ 0 0 1

0 0 0
0 0 0
])}

⟨△,⊺,φ[0 1 0
1 1 0
0 0 1

],[0 1 0
1 1 0
0 0 1

],[0 1 0
1 1 0
0 0 1

]⟩ not conjugate to any other subgroup shown here; {([ 0 0 0
1 0 1
1 0 1
], [ 0 0 0

1 0 1
1 0 1
], [ 0 0 0

1 0 1
1 0 1
]) ,

solution has rank 27 ([ 0 1 0
1 0 1
1 0 1
], [ 1 0 1

1 0 1
1 0 1
], [ 1 0 1

0 0 0
0 0 0
]) ,

([ 0 0 0
1 1 1
1 1 1
], [ 0 1 1

0 1 1
0 1 1
], [ 1 0 1

0 0 0
1 0 1
]) ,

([ 0 0 0
0 1 1
0 1 1
], [ 1 1 1

0 0 0
1 1 1
], [ 1 0 1

1 0 1
1 0 1
])}

Our source code is available at

https://github.com/coolcomputery/Matrix-Multiplication-Tensor-Decomposition.

5.1 Using flip graphs

[Kauers & Moosbauer, 2022] recently published their

“flip graph” method to find low-rank mod 2

decompositions of T ⟨n,k,m⟩, which they used

to obtain ⟨4,4,4 ∶ 47⟩Z2
(matching AlphaTensor

[Fawzi et al., 2022]) and ⟨5,5,5 ∶ 95⟩Z2
. The method

repeatedly applies ‘flips’ (which change two matrix

triplets at a time) and ‘reductions’ (which replace a

subset of n triplets with n−1 triplets if a certain linear

dependence condition is met) in a randomized man-

ner, effectively taking a random walk in the graph

where decompositions are nodes and flip/reductions

are edges (the ‘flip graph’). 10

We ran the provided source code of the flip graph

method on all the decompositions of T ⟨3⟩ that we

found, specifying argument values pathlength=109,

restart=1. The decomposition with rank 27 was only

reduced to rank 23 and took about 6 hours of compu-

tation. For every other decomposition, the flip graph

algorithm terminated immediately without produc-

10The flip graph does in fact account for symmetries of T ⟨n⟩: it uses the equivalence class where any two decompositions
that can be transformed to each other by applying some f ∈ Γ are equivalent. [Kauers & Moosbauer, 2022]
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[Kauers & Moosbauer, 2022] recently published their

“flip graph” method to find low-rank mod 2

decompositions of T ⟨n,k,m⟩, which they used

to obtain ⟨4,4,4 ∶ 47⟩Z2
(matching AlphaTensor

[Fawzi et al., 2022]) and ⟨5,5,5 ∶ 95⟩Z2
. The method

repeatedly applies ‘flips’ (which change two matrix

triplets at a time) and ‘reductions’ (which replace a

subset of n triplets with n−1 triplets if a certain linear

dependence condition is met) in a randomized man-

ner, effectively taking a random walk in the graph

where decompositions are nodes and flip/reductions

are edges (the ‘flip graph’). 10

We ran the provided source code of the flip graph

method on all the decompositions of T ⟨3⟩ that we

found, specifying argument values pathlength=109,

restart=1. The decomposition with rank 27 was only

reduced to rank 23 and took about 6 hours of compu-

tation. For every other decomposition, the flip graph

algorithm terminated immediately without produc-

10The flip graph does in fact account for symmetries of T ⟨n⟩: it uses the equivalence class where any two decompositions
that can be transformed to each other by applying some f ∈ Γ are equivalent. [Kauers & Moosbauer, 2022]

9



40 

Volume 45, Spring 2023 ReportsMURJ
ing any output; adding some console-printing lines in

the code revealed that the algorithm was unable to do

a flip or a reduction on the first step of the walk, sug-

gesting that every such decomposition is an isolated

point in the flip graph.

To confirm that this is indeed the case,

we note that a flip operation transforms

{(A,B,C) , (A,B′, C ′)} to {(A,B +B′, C) ,
(A,B′, C ′ −C) (or any index-permuted variant), so

it requires both triplets to share a matrix at

some index; and a reduction operation on triplets

{(A(k),B(k), C(k))}
k
requires that {A(k)}

k
, {B(k)}

k
,

or {C(k)}
k
span a 1-dimensional subspace, i.e. for

one of those sets to consist of matrices that are just

different scalar multiples of the same underlying ma-

trix. For each decomposition D we found that had

rank 23, and for every index 0 ≤ a < 3, the matrices

da for all d ∈D (i.e. the ath matrix of every triplet in

D) were all nonzero and mutually distinct; this im-

mediately means no flips are possible, and since we

are working over Z2, no reductions are possible ei-

ther. For the last decomposition we found that had

rank 27, ∣{da ∶ d ∈D}∣ = 21 for each a, which explains

why it could be improved with flips and reductions.

5.2 Takeaways from search results

We still have not found a decomposition of T ⟨3⟩ with
rank 22 or lower. However, we note some interesting

observations:

• Among all rank ≤ 23 decompositions of T ⟨3⟩ we
found, there are four distinct symmetry sub-

groups, but only two distinct subgroups up to

conjugacy, with one of them being conjugate to

GBallard.

• Since none of the decompositions we found have

rank < 23, by Corollary 1 this means that no

such decompositions exist (over Z2) for any of

the symmetry subgroups listed above, so ana-

lyzing them further would be a dead end.

• Setting F = {id},R = 2 yields no solutions, so

the rank of T ⟨3⟩ is at least 3 over Z2. This is

a very weak lower bound; in fact, the rank of

T ⟨3⟩ is known to be at least 19 over arbitrary

fields. [Bläser, 2003]

• For S = {△,⊺}, every symmetry subgroup

⟨S ∪ {f}⟩ except for ⟨△,⊺, id⟩ has been proven

to not have a rank < 23 decomposition.

• For S = {△}, if we restrict our attention to

rank ≤ 21 decompositions (since 21 is the largest

rank for which we would surpass Strassen’s al-

gorithm, as log3 21 ≈ 2.771 < 2.807 ≈ log2 7),

the only subgroups ⟨S ∪ {f}⟩ that might have a

rank ≤ 21 decomposition are ⟨△, id⟩, ⟨△,⊺⟩, and
⟨△,φ

M=[1 1 0
0 1 0
0 0 1

],M,M
⟩. The last of these sub-

groups seems to be the most feasible to analyze

and might be worth investigating further.

6 Future directions

Despite our unsuccessful attempt to obtain a rank-

22 decomposition of T ⟨3⟩ with our algorithm and

with flip graphs, we still think that combin-

ing these two approaches is promising and that

there is still much left to uncover; although

[Kauers & Moosbauer, 2022] account for symmetries

of T ⟨n⟩ in their equivalence classes between decom-

positions, they do not seem to investigate individual

decompositions that have high amounts of symmetry.

Another strategy worth attempting could be gen-

eralizing flips and reductions to more complex trans-

formations of decompositions, since all of our solu-

tions except the last one with rank 27 could not be

transformed at all with flips and reductions alone.

Finally, bigger tensors such as T ⟨4⟩ can be investi-

gated for symmetric decompositions, although extra

restrictions may have to be enforced on what ma-

trix triplets are allowed, since enumerating all ma-

trix triplets (≈ 2(3n2) of them) is only feasible on

a home computer up to n = 3. One such restric-

tion could be a sparsity constraint, such as setting a

maximum allowed value of b (A)b (B)b (C) for each
triplet (A,B,C), where b (M) is the number of 1s in

matrix M .
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